A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores
نویسندگان
چکیده
All-metallic sandwich panels with truss and prismatic cores have impending application as ultra-light load bearing panels amenable to simultaneous active cooling and blast resistance. To facilitate application, a protocol for characterizing the structural performance of such panels is needed that can be used for design calculations. An approach capable of realizing this objective is presented and demonstrated for panels with pyramidal truss cores. It combines measurements, mechanism maps, finite element simulations and optimization. Mechanism maps based on beam theory are used to characterize face and core dimensions as well as to estimate minimum weight designs. Experimental measurements and finite element calculations are used to calibrate and understand the responses of the core in transverse compression, in-plane shear and stretch. Overlaying the measurements and simulations allows assessment of the mechanical properties of the core material, as affected by fabrication. The updated results are used to establish and calibrate an orthotropic constitutive law for the core. Bending tests performed on panels subject to two end constraints are used to assess the fidelity of the core constitutive law. The tests are simulated by using a stress/strain response for the faces obtained from independent tensile measurements. The comparison reveals that the loads are predicted quite accurately. However, when controlled by the core, the simulations predict a more abrupt yield point than that found experimentally. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores
Structural performance in direct (pure) shear and three-point bending was investigated for sandwich panels with a carbon fiber pyramidal truss core. Analytical estimates for sandwich panel strength for each loading condition were presented for possible competing failure modes. In the experimental part of the study, pyramidal truss cores were made using the hot press molding technique and then a...
متن کاملBending behavior of lightweight sandwich-walled shells with pyramidal truss cores
A study on the bending response of a composite curved panel with pyramidal metallic truss cores suitable for functional applications is presented using a combination of analytical modeling, three-point bending experiments and finite element (FE) based simulations. The aluminum pyramidal cores were constructed using an interlocking method before curing with composite face sheets to fabricate the...
متن کاملFabrication and structural performance of periodic cellular metal sandwich structures
Metallic sandwich panels with periodic, open-cell cores are important new structures, enabled by novel fabrication and topology design tools. Fabrication protocols based on the sheet forming of trusses and shell elements (egg-boxes) as well as textile assembly have allowed the manufacture of robust structures by inexpensive routes. Topology optimization enables control of failure mechanisms at ...
متن کاملCompression and impact testing of two-layer composite pyramidal-core sandwich panels
Quasi-static uniform compression tests and low-velocity concentrated impact tests were conducted to reveal the failure mechanisms and energy absorption capacity of two-layer carbon fiber composite sandwich panels with pyramidal truss cores. Three different volume-fraction cores (i.e., with different relative densities) were fabricated: 1.25%, 1.81%, and 2.27%. Two-layer sandwich panels with ide...
متن کاملDesigning a prefabricated sandwich composite roofing system Made up of resisting facings and light-weight concrete core with truss-shaped connectors
In this paper, a new roofing system is introduced, which is constructued using the precast composite sandwich panels. This roofing sandwich panels system consists of three kinds of precast concrete sandwich panels including capital panels, beam or between columns panels, and slab or middle panels. The panels are composed of three layers; A high strength reinforced concrete top layer. A thick la...
متن کامل